If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6q^2-40q+10=0
a = 6; b = -40; c = +10;
Δ = b2-4ac
Δ = -402-4·6·10
Δ = 1360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1360}=\sqrt{16*85}=\sqrt{16}*\sqrt{85}=4\sqrt{85}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-4\sqrt{85}}{2*6}=\frac{40-4\sqrt{85}}{12} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+4\sqrt{85}}{2*6}=\frac{40+4\sqrt{85}}{12} $
| 49^x+4=7^18-x | | 8x+19=5x+37 | | 2/9n+1/2=2/3(n+) | | 22+(x÷2)=× | | 14.70=-9.2p+23.9 | | (x+54)=5x | | -9-8(1+4h)=-24.5 | | 7(x-2)=4x-12 | | 22+x÷2=× | | (4+2i)(3-5i)=0 | | 14.70=-2.9p+23.9 | | 1+5|4x-1|=15 | | (x+45)=4x | | Y=-2x^2+36+6 | | 3x-5=2x-20=4x-30 | | 9w+3{w-7}=18-w | | 46=-5s+56 | | 12(3x+9)=72 | | C=-5s+56 | | -7-3x=-5x-31 | | 4-(y+4)=y | | (x-4)(x-8)=x(x-14) | | x/7+9=9 | | x(.75)+x=115 | | -6+2c/2=-10/2 | | 8+6x=4x+16 | | (x+12)÷4=4 | | F(1)=3x^2-2x+7 | | (406/(x^2))=4 | | 2-3x-4=2x+9 | | 4n-14=n/2 | | 6(-2x+4)-19=-10x+33 |